If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35k^2+51k-8=0
a = 35; b = 51; c = -8;
Δ = b2-4ac
Δ = 512-4·35·(-8)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-61}{2*35}=\frac{-112}{70} =-1+3/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+61}{2*35}=\frac{10}{70} =1/7 $
| 10^x=-0.1 | | 36k^2+51k-1=7 | | x^2=5(7+5) | | 500-3x=-(-x+60) | | -12-4+b=-10 | | -18=4v+2 | | 2m-16+2m=12 | | 52+2w=21 | | 4x=7-(3x-35 | | 9m-10=5 | | 16=12+b | | 9^2=3(x+3) | | 8-(3w-2)=-5(w-3)-1(4w-3) | | 3+12p=4 | | 3^2=9(x+9) | | 0.15x+0.18(50,000-x)=2460 | | 5x-3=5+4.x+2 | | 20-5n=3 | | 7.2s=800 | | 3d-2=9 | | 12^2=9(x+9) | | -7x-32=17 | | (1.5x)5+40x=2593.50 | | 15^2=9(x+9) | | 3x^2+24x-100=0 | | −5(x−7)=−20 | | 15s=6 | | −5(x−7)=−20-7-7 | | Y=5x-31 | | 3q+1=8 | | 2x+21+12+35+30+20=90 | | 2x+21+12+35+30+20=360 |